
Channel - A C++ Template
Framework for Distributed
Message Passing

Yigong Liu

Topics

● Introduction
● Template generic programming
● Plan9 namespace
● Channel dynamic configuration - pub/sub

namespace management
● Channel static configuration - polymorphic

channels
● Examples
● Q&A

Introduction (1)

 template
 <
 class IdType,
 class IdTrait = IdTrait<Id_Type>,
 class SynchPolicy = ACE_MT_SYNCH,
 class DispatchPolicy = BroadcastPolicy,
 class Router = MapRouter<Id_Type, Id_Trait,
SynchPolicy, DispatchPolicy>

 >
 class Channel

Introduction (2)

● The design of message passing system
involves many aspects:
– static configuration: routing/dispatching/...
– dynamic configuration: pub-sub scope/remote

connection/...
● C++ template framework to allow users

customize these aspects by choosing or
designing proper trait/policy classes and
create publish-subscribe message passing
system best-fit for a particular application

Template Generic Programming

● C++ template is Turing complete(compile time
computation):
– template specialization as conditional constructs
– template recursion as looping construct

● Generic programming techniques:
– trait/policy classes
– compile-time/static method dispatch
– structure customization

Sample – Calculate Factorial At
Compile Time

template <int N>
struct Factorial
{
 enum { value = N * Factorial<N – 1>::value };
};
template <>
struct Factorial<0>
{
 enum { value = 1 };
};

Plan9 Namespace (file-system)

● every resource (local/remote) is represented
as a hierarchical file system:
– window system, network stack, ...

● each process has a private mutable
view/namespace of system resource
– processes can customize its namespace and

have different views
● remote resource sharing thru 9p protocol

Channel Dynamic Configuration -
pub/sub namespace management
● Channel – a process local namespace.
● Peers (threads/callbacks) communicate thru

channels by pub-sub messages(Ids).
● Remote channels can be connected for

distributed communication.
● Publish/subscribe scope control

– local, remote, global
● Namespace "merge" operations

– A -> B, B -> A
● translators and filters

Channel Static Configuration -
Polymorphic Channels
● By instantiating channel template with proper

designed trait/policy classes, obtain a best-fit
messaging framework for application

● Id_Type and Id_Trait
● Routing Data Structures and Algorithms:

– Hash/Map
– Trie/tree and pathname prefix matching
– Associative matching

● Dispatching Algorithms
– Broadcast, RoundRobin, Random,

Examples (1)

typedef Channel<int> Chan;
......
struct StructId {

int family;
int type;

};
typedef Channel<StructId> Chan;

Examples (2)

typedef StringPathId<'/'> IdType;
typedef Channel<IdType, IdTrait<IdType>,

ACE_MT_SYNCH,
RoundRobinDispatcher,
TrieRouter<IdType,

IdTrait<IdType>,
ACE_MT_SYNCH,

 RoundRobinDispatcher>
> Chan;

Q & A

http://channel.sourceforge.net

